Sains Malaysiana 53(12)(2024): 3349-3364
http://doi.org/10.17576/jsm-2024-5312-18
Cytoprotective
Role of Chondrocyte Coculturing for Enhanced Cartilage Regeneration
(Peranan Sitopelindung Pengkulturan Kondrosit untuk Penjanaan Semula Rawan Dipertingkat)
MUHAMMAD
FAIZAN TARIQ1, SUMERA RASHID1, AISHA TARAR1,
UMAR SAJJAD1, MUHAMMAD RAUF AHMED2, BUSHRA IJAZ1,
HAIBA KAUL3 & NOREEN LATIEF1,*
1National Centre of Excellence in Molecular
Biology, University of The Punjab, Lahore, Pakistan
2Department of Molecular Biology and Biochemistry, Shaheed Zulfiqar
Ali Bhutto Medical University, Islamabad, Pakistan
3Department of Animal Breeding and Genetics, University of
Veterinary and Animal Sciences, Lahore, Pakistan
Received: 28 July
2024/Accepted: 27 September 2024
Abstract
Osteoarthritis
is characterized by the progressive deterioration of articular cartilage,
leading to joint pain and functional impairments. Current treatment options are
limited in their ability to stimulate cartilage regeneration. Evidence suggests
that the co-culture technique, involving the interplay of multiple cell types,
may effectively restore damaged cartilage. This investigation assessed the
regenerative impact of co-culture on osteoarthritis-affected rat knee joints.
Gene expression profiling validated phenotypic and biochemical expression
analysis. Compared to the control group, the co-cultivated cohorts showed
elevated levels of cartilage-specific markers, such as collagen and aggrecan.
Notably, the group with stress and co-cultured with normal and osteoarthritic
chondrocytes (H2O2+N+OA) demonstrated significant
results, including lower LDH release (15.06 ± 1.461), decreased
glycosaminoglycan levels (1.551 ± 0.1487), and reduced cell death percentage
(17.50 ± 3.536) compared to the H2O2 control. Safranin-O
staining retention also increased (28.89 ± 2.846), indicating enhanced
cartilage matrix retention. Enhanced expression of survival markers such as Bcl (0.3974 ± 0.02241) and decreased apoptotic markers like Bax (0.2961 ± 0.01199) were observed, confirming the
stimulation of critical genes involved in cartilage development and matrix
synthesis. These findings support the potential of co-culture technology to
accelerate cartilage regeneration and offer an innovative strategy to impede osteoarthritis
progression.
Keywords: Cartilage
regeneration; cellular survival; co-culturing; osteoarthritis
Abstrak
Osteoartitis dicirikan oleh kemerosotan progresif rawan artikular yang membawa kepada sakit sendi dan gangguan fungsi. Pilihan rawatan semasa adalah terhad dalam keupayaannya untuk merangsang pertumbuhan semula rawan. Bukti menunjukkan bahawa teknik pengkulturan bersama yang melibatkan interaksi pelbagai jenis sel boleh memulihkan rawan yang rosak dengan berkesan. Penyelidikan ini menilai kesan penjanaan semula pengkulturan bersama pada sendi lutut tikus yang terjejas oleh osteoartitis. Pemprofilan pengekspresan gen mengesahkan analisis pengekspresan fenotip dan biokimia. Berbanding dengan kumpulan kawalan, kohort yang diusahakan bersama menunjukkan peningkatan tahap penanda khusus rawan, seperti kolagen dan aggrecan. Terutamanya, kumpulan dengan tekanan dan pengkulturan bersama dengan kondrosit normal dan kondrosit osteoartitis (H2O2+N+OA) menunjukkan hasil yang ketara, termasuk pelepasan LDH yang lebih rendah (15.06 ± 1.461), penurunan paras glikosaminoglikan (1.551 ± 0.1487) dan pengurangan peratusan kematian sel (17.50 ± 3.536) berbanding kawalan H2O2. Pengekalan pewarnaan Safranin-O juga meningkat (28.89 ± 2.846), menunjukkan pengekalan matriks rawan dipertingkat. Pengekspresan penanda kelangsungan hidup yang dipertingkatkan seperti Bcl (0.3974 ± 0.02241) dan penurunan penanda apoptosis seperti Bax (0.2961 ± 0.01199) telah diperhatikan, mengesahkan rangsangan gen kritikal yang terlibat dalam pembangunan rawan dan sintesis matriks. Penemuan ini menyokong potensi teknologi pengkulturan bersama untuk mempercepatkan pertumbuhan semula rawan dan menawarkan strategi inovatif untuk menghalang perkembangan osteoartitis.
Kata kunci: Kelangsungan hidup sel; osteoartitis; pengkulturan bersama; penjanaan semula rawan
REFERENCES
Borciani, G., Montalbano, G., Baldini,
N., Cerqueni, G., Vitale-Brovarone,
C. & Ciapetti, G. 2020. Co–culture systems of
osteoblasts and osteoclasts: Simulating in vitro bone remodeling in regenerative approaches. Acta Biomaterialia 108: 22-45.
Cao, X., Luo, P., Huang, J., Liang, C., He,
J., Wang, Z., Shan, D., Peng, C. & Wu, S. 2019. Intraarticular senescent
chondrocytes impair the cartilage regeneration capacity of mesenchymal stem
cells. Stem Cell Research & Therapy 10: 86.
Chen, Y., Ouyang, X., Wu, Y., Guo, S., Xie, Y. & Wang, G. 2020. Co-culture and mechanical
stimulation on mesenchymal stem cells and chondrocytes for cartilage tissue
engineering. Current Stem Cell Research & Therapy 15(1): 54-60.
Cho, H., Kim, D. & Kim, K. 2018.
Engineered co-culture strategies using stem cells for facilitated chondrogenic
differentiation and cartilage repair. Biotechnology and Bioprocess
Engineering 23: 261-270.
Del Bakhshayesh,
A.R., Babaie, S., Nasrabadi,
H.T., Asadi, N., Akbarzadeh,
A. & Abedelahi, A. 2020. An overview of various
treatment strategies, especially tissue engineering for damaged articular
cartilage. Artificial Cells Nanomedicine, and Biotechnology 48(1):
1089-1104.
Deszcz, I., Lis-Nawara,
A., Grelewski, P., Dragan, S. & Bar, J. 2020.
Utility of direct 3D co-culture model for chondrogenic differentiation of
mesenchymal stem cells on hyaluronan scaffold (Hyaff-11). Regenerative
Biomaterials 7(6): 543-552.
Driban, J.B., Harkey,
M.S., Barbe, M.F., Ward, R.J., MacKay, J.W., Davis,
J.E., Lu, B., Price, L.L., Eaton, C.B., Lo, G.H. & McAlindon,
T.E. 2020. Risk factors and the natural history of accelerated knee
osteoarthritis: A narrative review. BMC Musculoskeletal Disorders 21: 332.
Duan, W., Zhao, Y., Ren, X., Zhao, R., Li, Q.,
Sun, Z., Song, W., Yang, Y., Li, P. & Wei, X. 2021. Combination of
chondrocytes and chondrons improves extracellular
matrix production to promote the repairs of defective knee cartilage in
rabbits. Journal of Orthopaedic Translation 28: 47-54.
Ekram, S., Khalid, S., Bashir, I., Salim, A.
& Khan, I. 2021. Human umbilical cord-derived mesenchymal stem cells and
their chondroprogenitor derivatives reduced pain and inflammation signaling and promote regeneration in a rat intervertebral
disc degeneration model. Molecular and Cellular Biochemistry 476:
3191-3205.
Ganova, P., Belenska-Todorova,
L. & Ivanovska, N. 2023. Effect of estradiol on chondrocytes in the active stage of
collagenase-induced osteoarthritis. Current Bioactive Compounds 19(1):
3-10.
Gauci, S.J., Stanton, H., Little, C.B.
& Fosang, A.J. 2017. Proteoglycan and collagen
degradation in osteoarthritis. In Cartilage: Volume 2: Pathophysiology,
edited by Grässel, S. & Aszódi, A. Springer, Cham. pp. 41-61. https://doi.org/10.1007/978-3-319-45803-8_3
Gulati, K. & Poluri,
K.M. 2016. Mechanistic and therapeutic overview of glycosaminoglycans: the
unsung heroes of biomolecular signaling. Glycoconjugate
Journal 33(1): 1-17.
Hu, H., Liu, W., Sun, C., Wang, Q., Yang,
W., Zhang, Z., Xia, Z., Shao, Z. & Wang, B. 2021. Endogenous repair and
regeneration of injured articular cartilage: A challenging but promising
therapeutic strategy. Aging and Disease 12(3): 886.
Li, W., Yin, X., Yan, Y., Liu, C. & Li,
G. 2023. Kurarinone attenuates hydrogen
peroxide‐induced oxidative stress and apoptosis through activating the
PI3K/Akt signaling by
upregulating IGF1 expression in human ovarian granulosa cells. Environmental
Toxicology 38(1): 28-38.
Liu, G., Liu, Q., Yan, B., Zhu, Z. &
Xu, Y. 2021. USP7 inhibition alleviates H2O2-induced
injury in chondrocytes via inhibiting NOX4/NLRP3 pathway. Frontiers in Pharmacology 11: 617270.
Liu, L., Luo, P., Yang, M., Wang, J., Hou,
W. & Xu, P. 2022. The role of oxidative stress in the development of knee
osteoarthritis: A comprehensive research review. Frontiers in Molecular
Biosciences 9: 1001212.
Lohan, P., Treacy, O., Lynch, K., Barry, F.,
Murphy, M., Griffin, M.D., Ritter, T. & Ryan, A.E. 2016. Culture expanded
primary chondrocytes have potent immunomodulatory properties and do not induce
an allogeneic immune response. Osteoarthritis and Cartilage 24(3):
521-533.
Mandatori, D., Penolazzi,
L., Pelusi, L., Lambertini,
E., Michelucci, F., Porreca,
A., Cerritelli, P., Pipino,
C., Di Iorio, A. & Bruni, D. 2021.
Three-dimensional co-culture system of human osteoblasts and osteoclast
precursors from osteoporotic patients as an innovative model to study the role
of nutrients: Focus on vitamin K2. Nutrients 13(8): 2823.
Marchan, J., Wittig, O., Diaz-Solano,
D., Gomez, M. & Cardier, J.E. 2022. Enhanced
chondrogenesis from chondrocytes co-cultured on mesenchymal stromal cells:
Implication for cartilage repair. Injury 53(2): 399-407.
Mieloch, A.A., Richter, M., Trzeciak,
T., Giersig, M. & Rybka,
J.D. 2019. Osteoarthritis severely decreases the elasticity and hardness of
knee joint cartilage: A nanoindentation study. Journal of Clinical Medicine 8(11): 1865.
Nguyen, C., Lefèvre-Colau,
M-M., Poiraudeau, S. & Rannou,
F. 2016. Rehabilitation (exercise and strength training) and osteoarthritis: A
critical narrative review. Annals of Physical and Rehabilitation Medicine 59(3): 190-195.
Niemeyer, P., Albrecht, D., Andereya, S., Angele, P., Ateschrang,
A., Aurich, M., Baumann, M., Bosch, U., Erggelet, C. & Fickert, S.
2016. Autologous chondrocyte implantation (ACI) for cartilage defects of the
knee: A guideline by the working group “Clinical Tissue Regeneration” of the
German Society of Orthopaedics and Trauma (DGOU). The Knee 23(3):
426-435.
Nirmal, P.S., Jagtap, S.D., Narkhede, A.N., Nagarkar, B.E.
& Harsulkar, A.M. 2017. New herbal composition
(OA-F2) protects cartilage degeneration in a rat model of collagenase induced
osteoarthritis. BMC Complementary and Alternative Medicine 17: 6.
Ogura, T., Ackermann, J., Mestriner, A.B., Merkely, G.
& Gomoll, A.H. 2020. Minimal clinically important
differences and substantial clinical benefit in patient-reported outcome
measures after autologous chondrocyte implantation. Cartilage 11(4):
412-422.
Orning, P. & Lien, E. 2021. Multiple roles of
caspase-8 in cell death, inflammation, and innate immunity. Journal of
Leucocyte Biology 109(1): 121-141.
Peng, Z., Sun, H., Bunpetch,
V., Koh, Y., Wen, Y., Wu, D. & Ouyang, H. 2021. The regulation of cartilage
extracellular matrix homeostasis in joint cartilage degeneration and
regeneration. Biomaterials 268: 120555.
Sekaran, S., Vimalraj,
S. & Thangavelu, L. 2021. The physiological and
pathological role of tissue nonspecific alkaline phosphatase beyond
mineralization. Biomolecules 11(11): 1564.
Silva, J.C., Carvalho, M.S., Han, X., Xia,
K., Mikael, P.E., Cabral, J.M.S., Ferreira, F.C. & Linhardt,
R.J. 2019. Compositional and structural analysis of glycosaminoglycans in
cell-derived extracellular matrices. Glycoconjugate Journal 36: 141-154.
Song, E.K., Jeon, J., Jang, D.G., Kim,
H.E., Sim, H.J., Kwon, K.Y., Medina-Ruiz, S., Jang, H-J., Lee, A.R. & Rho,
J.G. 2018. ITGBL1 modulates integrin activity to promote cartilage formation
and protect against arthritis. Science Translational Medicine 10(462):
eaam7486.
Tan, Z.Q., Leow,
H.Y., Lee, D.C.W., Karisnan, K., Song, A.A.L., Mai,
C.W., Yap, W.S., Lim, S.H.E. & Lai, K.S. 2019. Co-culture systems for the
production of secondary metabolites: Current and future prospects. The Open
Biotechnology Journal 13: 18-26.
Tschaikowsky, M., Brander, S., Barth, V., Thomann, R., Rolauffs, B., Balzer, B.N. & Hugel,
T. 2022. The articular cartilage surface is impaired by a loss of thick
collagen fibers and formation of type I collagen in
early osteoarthritis. Acta Biomaterialia 146:
274-283.
Wang, C., Brisson, B.K., Terajima, M., Li, Q., Han, B., Goldberg, A.M., Sherry Liu,
X., Marcolongo, M.S., Enomoto-Iwamoto,
M. & Yamauchi, M. 2020. Type III collagen is a key regulator of the
collagen fibrillar structure and biomechanics of articular cartilage and
meniscus. Matrix Biology 85: 47-67.
Wen, Z., Lei, Z., Yao, L., Jiang, P., Gu,
T., Ren, F., Liu, Y., Gou, C., Li, X. & Wen, T. 2016. Circulating histones
are major mediators of systemic inflammation and cellular injury in patients
with acute liver failure. Cell Death & Disease 7(9): e2391.
Wolff, D.G., Christophersen,
C., Brown, S.M. & Mulcahey, M.K. 2021. Topical
nonsteroidal anti-inflammatory drugs in the treatment of knee osteoarthritis: A
systematic review and meta-analysis. The Physician and Sportsmedicine 49(4): 381-391.
Xu, J., Yan, L., Yan, B., Zhou, L., Tong,
P. & Shan, L. 2020. Osteoarthritis pain model induced by intra-articular
injection of mono-iodoacetate in rats. Journal of Visualized Experiments 159: e60649.
Yang, J., Song, X., Feng, Y., Liu, N., Fu,
Z., Wu, J., Li, T., Chen, H., Chen, J. & Chen, C. 2020. Natural
ingredients-derived antioxidants attenuate H2O2-induced
oxidative stress and have chondroprotective effects on human osteoarthritic
chondrocytes via Keap1/Nrf2 pathway. Free Radical Biology and Medicine 152: 854-864.
Yang, Z., Li, H., Yuan, Z., Fu, L., Jiang,
S., Gao, C., Wang, F., Zha, K., Tian, G. & Sun,
Z. 2020. Endogenous cell recruitment strategy for articular cartilage
regeneration. Acta Biomaterialia 114: 31-52.
*Corresponding author; email:
noreen.latief@cemb.edu.pk